METODE GRAFIK
Metode
grafik hanya bisa digunakan untuk menyelesaikan permasalahan pemograman linier untukdua variabel keputusan. Untuk menyelesaikan permasalahan tersebut, langkah pertama yang harus
dilakukan adalah memformulasikan permasalahan yang ada ke dalam bentuk model Linear Programming (LP). Kemudian utk menyelesaikan model tersebut:
1.
Gambar persamaan fungsi kendala
2.
Tentukan daerah fisibel
3.
Untuk
menentukan solusi yang optimal, ada dua cara yang bisa digunakan yaitu
a. Menggunakangaris profit (iso profit line),
Penyelesaian dengan menggunakan garis profit adalah
penyelesaian dengan menggambarkan fungsi tujuan. Kemudian fungsi tujuan
tersebut digeser ke kanan sampai menyinggung titik terjauh dari dari titik nol,
tetapi masih berada pada area layak (feasible region). Untuk menggambarkan
garis profit, kita mengganti nilai Z dengan sembarang nilai yang mudah dibagi
oleh koefisien pada fungsi profit.
b. Menggunakantitiksudut (corner point)
Penyelesaian dengan mencari nilai optimum
pada titik-titik sudut yang
berada pada area layak (feasible region)
Contoh
:
Perusahaan Krisna Furniture yang akan membuat
meja dan kursi. Keuntungan yang diperoleh dari satu unit meja adalah $7,-
sedang keuntungan yang diperoleh dari satu unit kursi adalah $5,-
Namun untuk meraih keuntungan tersebut Krisna
Furniture menghadapi kendala keterbatasan jam kerja. Untuk pembuatan 1 unit
meja dia memerlukan 4 jam kerja. Untuk pembuatan 1 unit kursi dia membutuhkan 3
jam kerja. Untuk pengecatan 1 unit meja dibutuhkan 2 jam kerja, dan untuk
pengecatan 1 unit kursi dibutuhkan 1 jam kerja. Jumlah jam kerja yang tersedia
untuk pembuatan meja dan kursi adalah 240 jam per minggu sedang jumlah jam
kerja untuk pengecatan adalah 100 jam per minggu. Berapa jumlah meja dan kursi
yang sebaiknya diproduksi agar keuntungan perusahaan maksimum?
Dari kasus di atas dapat diketahui bahwa
tujuan perusahaan adalah memaksimumkan profit. Sedangkan kendala perusahaan
tersebut adalah terbatasnya waktu yang tersedia untuk pembuatan dan pengecatan. Apabila permasalahan tersebut
diringkas dalam satu tabel akan tampak sebagai berikut:
|
Jam kerja untuk membuat 1 unit produk
|
Total
waktutersedia per minggu
|
|
|
Meja
|
Kursi
|
|
Pembuatan
|
4
|
2
|
240
|
Pengecatan
|
2
|
1
|
100
|
Profit per Unit
|
7
|
5
|
|
Mengingat produk yang akan dihasilkan adalah meja dan
kursi, maka dalam rangka memaksimumkan profit, perusahaan harus memutuskan
berapa jumlah meja dan kursi yang sebaiknya diproduksi. Dengan demikian dalam
kasus ini, yang merupakan variabel keputusan adalah meja (X1) dan kursi (X2).
1.
Fungsi
Tujuan
Profit = ($ 7 x jml meja yang diproduksi) + ($ 5 x jml
kursi yang diproduksi)
Secara matematis dapat ditulis :
Maksimisasi : Z = 7 X1 +
5 X2
2.
Fungsi
Kendala
·
Kendala
: Waktu pembuatan
1 unit meja memerlukan 4 jam untuk pembuatan -> 4
X1
1 unit kursi memerlukan 3 jam untuk pembuatan -> 3
X2
Total waktu yang tersedia per minggu untuk pembuatan ->
240 Jam
Dirumuskan dalam pertidaksamaan matematis -> 4
X1 + 3 X2£ 240
·
Kendala
: Waktu pengecatan
1 unit meja memerlukan 2 jam untuk pengecatan -> 2
X1
1 unit kursi memerlukan 1 jam untuk pengecatan -> 1
X2
Total waktu yang tersedia per minggu untuk pengecatan ->
100 Jam
Dirumuskan dalam pertidaksamaan matematis -> 2
X1 + X2£ 100
Formulasi masalah secara lengkap :
Fungsi Tujuan :
Maks. Z = 7 X1 + 5 X2
Fungsi Kendala : 4
X1+ 3 X2£ 240
2
X1+ X2£ 100
X1 , X2 ³ 0 (kendala
non-negatif)
Setelah formulasi lengkapnyadibuat, maka Kasus Krisna Furniture tersebut akan diselesaikan dengan
metode grafik. Keterbatasan metode grafik adalah bahwa hanya tersedia dua sumbu
koordinat, sehingga tidak bisa digunakan untuk menyelesaikan kasus yang lebih
dari dua variabel keputusan.
Langkah pertama dalam penyelesaian dengan
metode grafik adalah menggambarkan fungsi kendalanya. Untuk menggambarkan
kendala pertama secara grafik, kita harus merubah tanda pertidaksamaan menjadi
tanda persamaan seperti berikut.
4 X1 + 3 X2 = 240
Untuk menggambarkan fungsi linear, maka cari
titik potong garis tersebut dengan kedua sumbu. Suatu garis akan memotong salah
satu sumbu apabila nilai variabel yang lain sama dengan nol. Dengan demikian
kendala pertama akan memotong X1, pada saat X2 = 0,
demikian juga kendala ini akan memotong X2, pada saat X1
= 0.
Kendala I :
4 X1
+ 3 X2 = 240
memotong sumbu X1 pada saat X2
= 0
4 X1+ 0 = 240
X1 = 240/4
X1 = 60.
memotong sumbu X2 pada saat X1
= 0
0 + 3 X2 = 240
X2 = 240/3
X2 = 80
Kendala I memotong sumbu X1 pada
titik (60, 0) dan memotong sumbu X2 pada titik (0, 80).
Kendala II:
2 X1 + 1 X2 = 100
memotong sumbu X1 pada saat X2
= 0
2 X1 + 0 = 100
X1 = 100/2
X1 = 50
memotong sumbu X2 pada saat X1
=0
0 + X2 = 100
X2 = 100
Kendala I memotong sumbu X1 pada
titik (50, 0) dan memotong sumbu X2 pada titik (0, 100).
Titik potong kedua kendala bisa dicari dengan
cara substitusi atau eliminasi
2 X1 + 1 X2 = 100 -> X2 = 100 - 2 X1
4 X1 + 3 X2 = 240 X2 = 100 - 2 X1
4 X1 + 3 (100
- 2 X1) = 240 X2 = 100 - 2 * 30
4 X1 + 300 -
6 X1 = 240 X2 = 100 - 60
- 2 X1 = 240
- 300 X2 = 40
- 2 X1 = - 60
X1 = -60/-2 = 30.
Sehingga kedua kendala akan saling berpotongan pada titik
(30, 40).
Tanda ≤ pada kedua kendala ditunjukkan pada area sebelah
kiri dari garis kendala. Feasible region (area layak)
meliputi daerah sebelah kiri dari titik A (0; 80), B (30; 40), dan C (60; 0).
Untuk menentukan solusi yang optimal, ada dua cara yang
bisa digunakan yaitu
1. denganmenggunakangaris profit (iso profit line)
2. dengantitiksudut (corner point)
Penyelesaian dengan menggunakan garis profit adalah
penyelesaian dengan menggambarkan fungsi tujuan. Kemudian fungsi tujuan
tersebut digeser ke kanan sampai menyinggung titik terjauh dari dari titik nol,
tetapi masih berada pada area layak (feasible region). Untuk menggambarkan
garis profit, kita mengganti nilai Z dengan sembarang nilai yang mudah dibagi
oleh koefisien pada fungsi profit. Pada kasus ini angka yang mudah dibagi angka
7 (koefisien X1) dan 5 (koefisien X2) adalah 35. Sehingga fungsi tujuan menjadi
35 = 7 X1 + 5 X2. Garis ini akan memotong sumbu X1 pada titik (5, 0) dan memotong sumbu X2 pada titik (0, 7).
Iso profit line menyinggung titik B yang merupakan titik
terjauh dari titik nol. Titik B ini merupakan titik optimal. Untuk mengetahui
berapa nilai X1 dan X2, serta nilai Z pada titik B tersebut,
kita mencari titik potong antara kendala I dan kendala II (karena titik B
merupakan perpotongan antara kendala I dan kendala II). Dengan menggunakan
eliminiasi atau subustitusi diperoleh nilai X1
= 30, X2 = 40. dan Z = 410. Dari
hasil perhitungan tersebut maka dapat disimpulkan bahwa keputusan perusahaan
yang akan memberikan profit maksimal adalah memproduksi X1 sebanyak 30 unit, X2
sebanyak 40 unit dan perusahaan akan memperoleh profit sebesar 410.
Penyelesaian dengan menggunakan titik sudut
(corner point) artinya kita harus mencari nilai tertinggi dari titik-titik yang
berada pada area layak (feasible region). Dari peraga 1, dapat dilihat bahwa
ada 4 titik yang membatasi area layak, yaitu titik 0 (0, 0), A (0, 80), B (30,
40), dan C (50, 0).
Keuntungan pada titik O (0, 0) adalah (7 x 0)
+ (5 x 0) = 0.
Keuntungan pada titik A (0; 80) adalah (7 x
0) + (5 x 80) = 400.
Keuntungan pada titik B (30; 40) adalah (7 x
30) + (5 x 40) = 410.
Keuntungan pada titik C (50; 0) adalah (7 x
50) + (5 x 0) = 350.
Karena keuntungan tertinggi jatuh pada titik
B, maka sebaiknya perusahaan memproduksi meja sebanyak 30 unit dan kursi
sebanyak 40 unit, dan perusahaan memperoleh keuntungan optimal sebesar 410.
0 komentar:
Posting Komentar